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The conjugate addition of oxygen-centered nucleophiles to
electron-deficient olefins has proven a challenging problem in
organic synthesis. The relative weakness ofO-nucleophiles, coupled
with problems associated with reaction reversibility, has hampered
the development of general methods for this transformation.1 As a
result, stereoselective variants of this reaction have been limited to
diastereoselectiveO-conjugate addition reactions of chiral alkoxides
to highly activated acceptors,2 intramolecular hemiacetal alkoxide
conjugate additions,3 and a single example of a catalytic asymmetric
ring-closure process involving a phenol.4 In this communication,
we describe the development of the catalytic asymmetric oxygen-
centered addition of salicylaldoxime toR,â-unsaturated imides, a
process that enables the synthesis ofâ-hydroxy carboxylic acid
derivatives with high levels of enantioselectivity.5

Over the past several years, our laboratory has demonstrated the
utility of (salen)aluminum complexes (1a-c, Figure 1) as catalysts
for the highly enantioselective conjugate addition of a variety of
weakly acidic6 nucleophiles (HN3,7a HCN,7b malononitrile and
substituted cyanoacetates7c). In the hopes of using this catalyst
system to induce the conjugate addition of oxygen-centered nucleo-
philes, we sought reagents with increased acidity and nucleophilicity
relative to typical alcohols. Oximes fit both of these criteria,8 and
the oxime ethers that would result from such conjugate additions
contain a potentially labileN-O bond, enabling a reductive
cleavage to afford formal hydration products (Scheme 1).

Many readily available oximes were screened with catalysts1b
and1c in a variety of solvents,9 and inexpensive salicylaldoxime
(3)10 emerged as theO-centered nucleophile of choice. Under
optimized conditions,µ-oxo dimer catalyst [(R,R)-(salen)Al]2O
(1c)7c effected the addition of salicylaldoxime to a variety ofR,â-
unsaturated imides (2a-f) in cyclohexane (Table 1). These additions
proceeded efficiently (g90% conversion) with excellent enantio-
selectivities (g97% ee) using 5 mol % of the dimeric catalyst.
Hydrogenolysis of the crude oxime ethers afforded the formal
hydration products4a-f in high overall yields without erosion of
optical purity.

As highlighted in Table 1 (products4d-f), the method is tolerant
of ester, acetal, and silyl ether functionality, allowing its potential
application as an acetate aldol alternative in polyketide natural
product synthesis (see below). Practical limitations include pro-
hibitively slow rates with substrates bearing aromatic or highly
hinderedâ-substituents, an apparent necessity for partial solubility
of the substrate in the alkane-based reaction media, and incompat-
ibility of functional groups reducible under the hydrogenolysis
conditions.11

To assess the potential applicability of this method to the
synthesis of polyproprionate or polyacetate natural products, we
evaluated the ability of catalyst1c to deliver stereochemically
complex products with high levels of catalyst-induced diastereo-

selectivity. Substrates5, 7, and9 were prepared in enantioenriched
form and subjected to the two-step formal hydration sequence (see
Scheme 2).

High conversions were attained in the oxime additions, with
nearly complete catalyst control. Thus, reaction of ethyl (R)-3-
hydroxybutyrate-derived5 in the presence of(R,R)-1c led to highly
selective formation of the 1,3-anti addition product6a, and(S,S)-
1c delivered the 1,3-syn product 6b. Analogous results were
obtained with malic acid-derived substrate7 and Roche ester-
derived imide9.12 All products were isolated in good yields after
hydrogenolysis of the crude oxime ethers.13 The utility of this
approach is envisioned to be greatest in complex settings when
substrate-controlled aldol reactions fail to provide acceptable levels
of stereochemical control.

The imide functionality required for achieving high enantio-
selectivity in these (salen)Al-catalyzed conjugate addition reactions7a

is converted readily into a variety of other carboxylic acid
derivatives. For example, ethanolysis of theâ-hydroxy imides was
catalyzed by Er(OTf)3 with excellent regioselectivity and in high
yields;7c,14the mild conditions were compatible with ester and acetal
functionalities such as those in the imide products derived from
4d and4e.15 This process enabled the verification of the absolute
stereochemistry of the formal hydration products, as the ester† Fellow of The Jane Coffin Childs Memorial Fund for Medical Research.

Figure 1. (salen)Al-Catalyzed asymmetric conjugate additions toR,â-
unsaturated imides.

Scheme 1. Approach to the Enantioselective Hydration of
R,â-Unsaturated Imides by an Asymmetric Conjugate Oxime
Addition/Hydrogenolysis Sequence
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derived from4a is ethyl (S)-3-hydroxybutyrate, a commercially
available substance.14

We have developed the first catalytic asymmetric conjugate
addition of an oxygen-centered nucleophile to unsaturated carboxy-
lic acid derivatives. When combined with efficientN-O bond

hydrogenolysis, this (salen)aluminum-catalyzed reaction enables the
net enantioselective hydration of electron-deficient olefins with no
need for purification of the intermediate oxime ethers.
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Table 1. Two-Step Enantioselective Synthesis of â-Hydroxy
Imides

a Conversion determined by1H NMR, ee determined by chiral HPLC
(Chiralpak AD column) of the intermediate oxime ether adduct.b Isolated
yield over two steps, after chromatography, from reactions carried out on
0.5 mmol scale.c A yield of 80% was obtained for the two-step sequence
carried out on 1.08 g (3.0 mmol) scale.

Scheme 2. Diastereoselective, Catalyst-Controlled, Two-Step
Hydration of Chiral, Nonracemic R,â-Unsaturated Imidesa

a Reaction conditions for the two-step sequence were identical to those
outlined in Table 1. Diastereomeric ratios were determined by1H NMR.
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